Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells.

نویسندگان

  • Erin Bertrand
  • Ryo Sakai
  • Elena Rozhkova-Novosad
  • Luke Moe
  • Brian G Fox
  • John T Groves
  • Rachel N Austin
چکیده

Whole cells expressing the non-heme diiron hydroxylases AlkB and toluene 4-monooxygenase (T4MO) were used to probe enzyme reaction mechanisms. AlkB catalyzes the hydroxylation of the radical clock substrates bicyclo[4.1.0]heptane (norcarane), spirooctane and 1,1-diethylcyclopropane, and does not catalyze the hydroxylation of the radical clocks 1,1-dimethylcyclopropane or 1,1,2,2-tetramethylcyclopropane. The hydroxylation of norcarane yields a distribution of products consistent with an "oxygen-rebound" mechanism for the enzyme in both the wild type Pseudomonas putida GPo1 and AlkB from P. putida GPo1 expressed in Escherichia coli. Evidence for the presence of a substrate-based radical during the reaction mechanism is clear. With norcarane, the lifetime of that radical varies with experimental conditions. Experiments with higher substrate concentrations yield a shorter radical lifetime (approximately 1 ns), while experiments with lower substrate concentrations yield a longer radical lifetime (approximately 19 ns). Consistent results were obtained using either wild type or AlkB-equipped host organisms using either "resting cell" or "growing cell" approaches. T4MO expressed in E. coli also catalyzes the hydroxylation of norcarane with a radical lifetime of approximately 0.07 ns. No radical lifetime dependence on substrate concentration was seen. Results from experiments with diethylcyclopropane, spirooctane, dimethylcyclopropane, and diethylcyclopropane are consistent with a restricted active site for AlkB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Production of Nitrous Oxide by the Heme/Nonheme Diiron Center of Engineered Myoglobins (FeBMbs) Proceeds through a trans-Iron-Nitrosyl Dimer

Denitrifying NO reductases are transmembrane protein complexes that are evolutionarily related to heme/copper terminal oxidases. They utilize a heme/nonheme diiron center to reduce two NO molecules to N2O. Engineering a nonheme Fe(B) site within the heme distal pocket of sperm whale myoglobin has offered well-defined diiron clusters for the investigation of the mechanism of NO reduction in thes...

متن کامل

2-Phenoxypyridyl Dinucleating Ligands for Assembly of Diiron(II) Complexes: Efficient Reactivity with O[subscript 2] to Form (-Oxo)diiron(III) Units

A series of 2-phenoxypyridyl and 2-phenoxyimino ligands, H2L (2,2’-(5,5’-(1,2phenylenebis(ethyne-2,1-diyl))bis(pyridine-5,2-diyl))diphenol, where R = H, Me, or t-Bu, and R’ = H, or Ph) and H2BIPS ((3,3’-(1E,1’E)-(3,3’-sulfonylbis(3,1-phenylene)bis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(5-methylbiphenyl-2-ol)) were synthesized as platforms for non-heme diiron(II) protein model complex...

متن کامل

Modeling non-heme iron proteins.

Synthetic modeling studies of non-heme iron proteins continue to contribute to our understanding of the mechanism of these proteins. Recently, mononuclear Fe(IV)=O complexes have been prepared and characterized to model the same species that are proposed to be the reactive intermediates in reactions involving mononuclear non-heme iron proteins. Generation of such species for the oxidation of or...

متن کامل

Dioxygen activation at non-heme diiron centers: characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase.

We report the generation and characterization of an intermediate in a mutant form of the toluene/o-xylene monooxygenase hydroxylase component from Pseudomonas stutzeri OX1. The reaction of chemically reduced I100W variant in the presence of the coupling protein, ToMOD, with dioxygen was monitored by stopped-flow UV/visible spectroscopy. Rapid-freeze quench (RFQ) samples were also generated for ...

متن کامل

First-principles study of non-heme Fe(II) halogenase SyrB2 reactivity.

We present here a computational study of reactions at a model complex of the SyrB2 enzyme active site. SyrB2, which chlorinates L-threonine in the syringomycin biosynthetic pathway, belongs to a recently discovered class of alpha-ketoglutarate (alphaKG), non-heme Fe(II)-dependent halogenases that share many structural and chemical similarities with hydroxylases. Namely, halogenases and hydroxyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of inorganic biochemistry

دوره 99 10  شماره 

صفحات  -

تاریخ انتشار 2005